Percent Increase or Decrease Worksheet

Decide whether the change is an increase or decrease $\uparrow \downarrow$ and find the percent using the formula $\frac{\text { change }}{\text { original }}$.

1. Before: 10

After: 12
2. Before: 15

After: 12
3. Before: 75

After: 60
4. Before: 110

After: 143
7. 1994 Cost: $\$ 171.33$ 1995 Cost: \$201.59
5. Before: 90

After: 200
8. Regular Price: $\$ 31.99$ Sale Price: \$22.39
11. Original Number: 45 New Number: 72
6. Before: 260

After: 160
10. 2004 Cost: $\$ 18.77$

2005 Cost: \$19.17
9. Start Price: $\$ 521.73$

End Price: 413.68
12. Original Number: 45

New Number: 18

Percent of Change - Given the \%, Find the Missing Number

 Use the $\frac{\text { change }}{\text { original }}=\frac{\%}{100}$ proportion, fill in what you know and solve for the missing number.1. Last year the $6^{\text {th }}$ grade had 350 students. This year the number decreased 36%. How many students are in this year's $6^{\text {th }}$ grade class?
2. Enrollment in the Ski/Snowboard Club increased by 30\% this year. There are now 182 students in the club. How many students were there last year?
3. The Game Stop is having a sale and all games are reduced by 55%. If a game is now $\$ 29.99$, what was the original price? Round your answer to the nearest cent.
4. AYSO has $188^{\text {th }}$ grade boys' teams this year, but this is a 28% (rounded to the nearest whole number) decrease from the prior year. How many $8^{\text {th }}$ grade teams were there last year?

Percent Increase or Decrease Worksheet
Decide whether the change is an increase or decrease ($\uparrow \downarrow$) and find the percent using the formula $\frac{\text { change }}{\text { original }}=\frac{\%}{100} \frac{\Delta}{O R 16}=x$

1. Before: 10

After: 12
$\frac{\Delta}{0216}$

$$
\begin{aligned}
& \frac{2}{10}=x \\
& x=2 \\
& x=20^{2} 2 \uparrow
\end{aligned}
$$

4. Before: 110

After: 143
2. Before: 15

After: $12 \downarrow$

$$
\frac{3}{15}=x
$$

$$
\frac{\Delta}{O R G}
$$

5. Before: 90 After: 200
6. Before: 75 After: $60 \downarrow$

$$
x=20 \% \downarrow
$$

$$
\frac{\Delta}{\operatorname{OR1G}} \frac{15}{75}=x
$$

6. Before: 260

After: 160

$$
\begin{array}{rl}
\frac{\Delta}{\Delta R 1 G} \quad \frac{110}{90}=x \quad \frac{\Delta}{\Delta 21 G} & \frac{100}{260}=x \\
x=122 \% \% & x=38 \%
\end{array}
$$

7. 1994 Cost: $\$ 171.33$
8. Regular Price: $\$ 31.99$
9. Start Price: $\$ 521.73$

End Price: 413.68
1995 Cost: $\$ 201.59$
Sale Price: $\$ 22.39$

$$
\begin{gathered}
\frac{\Delta}{0219} \frac{31.99-22.39}{31.99}=x \quad \frac{\Delta}{046} \frac{108.05}{521.73}=x \\
x=0.300093779 \\
x=30 \%
\end{gathered}
$$

$$
\begin{array}{r}
\frac{\Delta}{\text { ole }} \uparrow \frac{30.26}{171.33}=x \\
x=18 \% 1
\end{array}
$$

10. 2004 Cost: $\$ 18.77$

2005 Cost: $\$ 19.17$
11. Original Number: 45 New Number: 72

$$
\begin{gathered}
\frac{\Delta}{O R G}+\frac{0.40}{18.77}=x \\
x=2 \%
\end{gathered}
$$

$$
\begin{array}{rll}
\frac{\Delta}{O R 1 G} \uparrow \frac{27}{45}=x & \frac{\Delta}{O R G} & \frac{27}{45}=x \\
x=60 \% \uparrow & x=60 \% \downarrow
\end{array}
$$

12. Original Number: 45

New Number: 18

Percent of Change - Given the \%, Find the Missing Number Use the $\frac{\text { change }}{\text { original }}=\frac{\%}{100}$ proportion, fill in what you know and solve for the missing number.

1. Last year the $6^{\text {th }}$ grade had 350 students. This year the number decreased 36%. How many students are in this year's $6^{\text {th }}$ grade class?

$$
\begin{array}{rl}
\frac{350-x}{350} & =\frac{36}{10025} \\
14 & 1 \\
350-x & =126 \\
-350-350 \\
\frac{-x}{-1} & =\frac{-224}{-1}
\end{array}
$$

2. Enrollment in the Ski/Snowboard Club increased by 30% this year. There are now 182 students in the club. How many students were there last year?

$$
\begin{aligned}
& \begin{array}{l}
\text { Last Year }=x \\
\text { This Year }=182
\end{array} \uparrow \frac{182-x}{x}=\frac{303}{10010} \\
& 3 x=10(182-x) \\
& 3 x=1820-10 x \\
& +10 x+10 x \\
& \frac{13 x}{13}=\frac{1820}{13}
\end{aligned}
$$

3. The Game Stop is having a sale and all games are reduced by 55%. If a game is now $\$ 29.99$, what was the original price? Round your answer to the nearest cent.

$$
\begin{aligned}
& \text { Original price }=x \quad \downarrow \quad \frac{x-2999}{x}=\frac{5511}{10020} \\
& \text { Sale price }=29.99 \\
& \qquad \begin{aligned}
20(x-29.99) & =11 x \\
20 x-599.80 & =11 x \quad x=\$ 66.64 \text { was } \\
-20 x & -599.80
\end{aligned} \quad=\frac{-9 x}{-9} \quad \text { The original } \\
& \text { price. }
\end{aligned}
$$

4. AYSO has $188^{\text {th }}$ grade boys' teams this year, but this is a 28% (rounded to the nearest whole number) decrease from the prior year. How many $8^{\text {th }}$ grade teams were there last year?

$$
\begin{aligned}
& \text { Last year }=x \forall \quad \begin{aligned}
& \frac{x-18}{x}=\frac{257}{10025} \\
& \text { This year }=18 \\
& 7 x=25(x-18) \\
& 7 x=25 x-450 \\
&-25 x-25 x \\
& \frac{-18 x}{-18}=\frac{-450}{-18}
\end{aligned} \quad x=25 \text { teams }
\end{aligned}
$$

